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Abstract 

 
The waterway of a hydroelectric power plant from intake to tailrace is nothing more than a flow network. The estimation 

of edge flows (e.g., fluid flow rates in conduits) based on noisy measurements in a network is an ongoing research topic in 

computer science with numerous applications in diverse engineering disciplines. This paper presents a numerical approach 

which provides edge flow estimates with respect to a reference flow. Each edge flow estimate is described by a flow 

function which includes initially unknown coefficients to account for the underlying measurement principle of the flow 

metering device. These functions can be linear or non-linear in their unknowns but shall not include an intercept. Solving 

a system of equations which must fulfill the continuity law at each inner vertex provides the coefficient values. A search 

algorithm and model evaluation criteria are introduced to find the most suitable combination of flow functions. Finally, it 

provides a relative in-situ calibration of all edge flow metering devices simultaneously. Flow monitoring and optimization 

of plant output are suitable applications of it. 

 
 

1. Introduction 

 

It is a reliable and cost-efficient approach to perform 

index tests on hydraulic turbomachine units either to 

verify power vs. total head guarantees or to determine its 

optimum operating range. The use of a secondary flow 

metering technique (e.g., Winter-Kennedy differential 

pressure, acoustic clamp-on flow meter and others), 

which at least features proper short-period 

reproducibility, is sufficient for this purpose. The output 

of these flow meters is a measurand which requires some 

kind of scaling to provide a flow rate quantity with values 

of appropriate magnitude. The scaling is commonly 

based on model test data or on any reference operating 

condition. Since index tests at a multi-units powerplant 

will be executed successively unit by unit, the flow 

metering system on each unit will be scaled 

independently from other units. This proceeding gives 

the required information as listed above, but it cannot 

provide reliably the relative fluid portions flowing 

through the individual units, which is needed to operate 

all units under optimum power conditions. 

 

The numerical method described in this paper overcomes 

this drawback and provides flow estimations of each 

branch within the hydraulic network based on 

simultaneous indicative measurements of branch flows. 

The flow estimations are relative rather than absolute. 

The method consists of the next steps. 

 

First, we must assign flow functions, which reflect the 

characteristics of the branch flow metering device, to 

each branch. This also includes some unknown 

coefficients, which need to be determined later. One of 

these flow meters serves as reference, which all 

calibration results of the other metering devices are 

related to. The reference flow is also described by a flow 

function but without any unknown parameters. 

The flow functions are then combined to meet the 

network’s structure and to fulfill the continuity law at 

each inner vertex, i.e., a vertex within a hydraulic 

network, which is neither source nor sink, and which is 

directly connected to at least two other vertices. This 

model provides an over-determined system of equations, 

which, for our purposes in doing hydraulic 

measurements, is mostly linear in the unknown 

coefficients. Solving the system of equations by the least 

squares method leads to unbiased estimates of the 

formerly unknown coefficients aside other statistical 

parameters. 

In cases where the mathematical relationship of flow 

functions is unknown, finding a proper model can be a 

tedious task. Since the number of possible combinations 

of flow functions grows exponentially with the maximum 

number of unknowns per flow function, a suitable 

strategy is needed to find the best model. A simple 

backward elimination method, which only requires a few 

models to evaluate, is introduced. The best model among 

the evaluated ones is then chosen by a suitable 

information criterion. 

Finally, the favored model undergoes a visual and 

statistical examination which includes hypothesis testing 

on the calculated coefficients, residual diagnostics 

regarding unusual pattern of observations and to identify 

possible outliers, and curvature inspection of the branch 

flow estimates and their confidence intervals. 

The implementation of this method is shown next with 

real measurement data. Since a typical hydraulic network 
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for hydropower or pumping applications can be reduced 

to a single feeding line which is connected to several 

turbomachine units, we focus only on structures with one 

inner vertex. Details concerning the application on 

complex networks can be found in [1]. 

 

2. Method 

 

The individual steps of the method should be described 

by using former measurement data, which have been 

recorded during an index test campaign on two parallel 

operated main cooling pumps [2]. The left image of 

Figure 1 provides the hydraulic scheme of this site. Two 

pumps in parallel arrangement deliver water into a 

collector pipe, which is split downstream into three edges 

(i.e., branches) with individually adjustable valves by a 

trifurcation. Upstream the valves the three edges were 

equipped with clamp-on flow meters providing the 

measured edge flow rates 𝜔̂𝑖  with 𝑖 ∈ {1,2,3} . The 

collector flow rate 𝜔̂4  could not be measured directly 

because the whole length of this conduit was not 

accessible. 

 

2.1 Flow network 

The translation of the hydraulic scheme into a flow 

network (Figure 1) reveals that we have with vertex #5 a 

single inner vertex (𝑝 = 1). Furthermore, the network 

consists of 𝑛𝑣 = 5 vertices, i.e., one source (red circle) 

and three sinks (blue circles), and 𝑛𝑒 = 4 edges. First, we 

need to derive the incidence matrix 𝑩̃ ∈ ℤ𝑛𝑣×𝑛𝑒  whose 

elements are defined by   

 

[𝑩̃]
𝒊𝒋
= {

+1,   if edge 𝑗 enters vertex 𝑖,
−1,   if edge 𝑗 leaves vertex 𝑖, and

0,    otherwise.
 . (1) 

 

This gives for the network depicted on the right side of 

Figure 1 

 

𝑩̃ =

(

 
 

1
0
0
0
−1

0
1
0
0
−1

0
0
1
0
−1

0
0
0
−1
1 )

 
 
 . (2) 

 

We only need the rows belonging to inner vertices. 

Therefore, let us now infer the reduced incidence matrix 

𝑩 ∈ ℤ𝑝×𝑛𝑒  from Equation (2) by removing all rows 

which contains only one non-zero element yielding 

𝑩 = 𝒃1
𝑇 = (−1,−1,−1, 1)  (3) 

 

In this example 𝑩  consists of only one row which 

simplifies the next calculations. 

 

2.2 Flow functions and reference edge flow 

The reason for defining a flow function 𝑓𝑖(𝝎̂
𝑇; 𝜷) ∈ ℝ, 

which is assigned to edge 1 ≤ 𝑖 ≤ 𝑛𝑒 , is to provide a 

better approximation to the true relative edge flow rate 𝑞𝑖 
than the measured 𝜔̂𝑖  can do. The function arguments 

above, i.e., 𝝎̂𝑇 = (𝜔̂1, … , 𝜔̂𝑛𝑒)
𝑇

 and 𝜷 = (𝛽1…𝛽𝑚)
𝑇 , 

denote the vector of measured edge flow rates 𝜔̂𝑖 and the 

vector of unknown coefficients, respectively. Table 1 

contains the parameter values of the measured edge flow 

rates for 𝑛 = 9 measuring points. The measuring points 

have been recorded under constant pump head but with 

different openings of the three downstream valves. The 

constant pump head also ensured that 𝜔̂4 kept constant. 

Consequently, it was not needed to measure this edge 

flow rate, and we can set it equal to an arbitrary value, for 

instance, 𝜔̂4 = 𝜔̂𝑠𝑝. 

 

Table 1: Measured means of relative edge flow rates (source: [2]) 

# (−) 
𝜔̂1
𝜔̂𝑠𝑝

 (−) 
𝜔̂2
𝜔̂𝑠𝑝

 (−) 
𝜔̂3
𝜔̂𝑠𝑝

 (−) 
𝜔̂4
𝜔̂𝑠𝑝

 (−) 

1 0.54583 0.55630 -0.00024 1.00000 

2 0.48615 0.60867 -0.00006 1.00000 

3 0.42719 0.65810 -0.00010 1.00000 

4 0.61598 0.48504 -0.00049 1.00000 

5 0.69592 0.42131 -0.00002 1.00000 

6 0.50881 0.52906 0.05453 1.00000 

7 0.59396 0.46033 0.05448 1.00000 

8 0.52974 0.46139 0.10939 1.00000 

9 0.47430 0.51102 0.11070 1.00000 

 

Although we expect very good proportionality between 

the true values 𝑞𝑖  and the measured ones 𝜔̂𝑖 due to the 

measurement principle in use, we design our flow 

functions in the following manner: 

 

𝑓1(𝝎̂
𝑇; 𝜷) = 𝛽1𝜔̂1 + 𝛽2𝜔̂1

2, 

𝑓2(𝝎̂
𝑇; 𝜷) = 𝛽3𝜔̂2 + 𝛽4𝜔̂2

2, 

𝑓3(𝝎̂
𝑇; 𝜷) = 𝛽5𝜔̂𝟑 + 𝛽6𝜔̂3

2, and 

𝑓4(𝝎̂
𝑇; 𝜷) = 𝜔̂4. 

(4) 

Figure 1: Hydraulic scheme (left image) with edge flow metering devices (green circles) and its translation into a flow network (right 

image) with source (red circle) and sinks (blue circles) 
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That is, we assign a parabolic polynomial without 

intercept to the first three flow functions. The flow 

function of the collector pipe 𝑓4  does not contain any 

unknown coefficient and serves as reference edge flow 

( 𝑖⋆ = 4 ). From a mathematical point of view, the 

definition of a non-zero reference edge flow is required 

to obtain an unambiguous estimate for 𝜷. Again, it must 

be pointed out that all flow functions provide edge flow 

estimates in relation to the reference flow. Here we 

dispense with the treatment of non-linear flow functions, 

e.g., including a variable Winter-Kennedy exponent. For 

details on this matter see Reference [1].  

 

2.3 Ordinary least squares estimates 

A flow network with 𝑝 inner vertices can be described by 

the linear model 

 

𝒚 = 𝑿𝜷 + 𝝐 (5) 

 

with the response vector 𝒚 ∈ ℝ𝑝⋅𝑛, the design matrix 𝑿 ∈
ℝ𝑝⋅𝑛×𝑚  and the error vector 𝝐 ∈ ℝ𝑝⋅𝑛 . We may divide 

Equation (5) into 𝑝 sub-models yielding 

 

(

𝒚𝟏
⋮
𝒚𝒑
) = (

𝑿𝟏
⋮
𝑿𝒑

)𝜷 + (

𝝐𝟏
⋮
𝝐𝒑
) (6) 

 

with 𝒚𝒊 ∈ ℝ
𝑛 , 𝑿𝒊 ∈ ℝ

𝑛×𝑚  and 𝝐𝒊 ∈ ℝ
𝑛 . If sub-model 𝑖 

includes the reference edge flow 𝑖⋆  then 𝒚𝒊 = 𝒇𝒊⋆ , and 

𝒚𝒊 = 𝟎, otherwise. 

Let us keep the calculation scheme here simple by using 

ordinary least squares (OLS). The derivation with 

weighted least squares (WLS) can be found in [1]. OLS 

implies that 𝑣𝑎𝑟(𝒚𝒊) = 𝑣𝑎𝑟(𝝐𝒊) = 𝜎
2𝑬𝒏 , where the 

parameters 𝜎2  and 𝑬𝒏 ∈ ℝ
𝑛×𝑛  are the true model 

variance and the identity matrix, respectively. This also 

enables us to define the sum of squared errors, i.e., our 

cost function which must be minimized, by 

 

𝑆𝑆𝐸(𝜷) = ∑ (𝒚𝒊 − 𝑿𝒊𝜷)
𝑇(𝒚𝒊 − 𝑿𝒊𝜷)

𝒑
𝒊=𝟏  . (7) 

 

Setting the gradient of Equation (7) with respect to 𝜷 

equal to the zero vector provides the least squares 

estimate (LSE) of the solution vector yielding 

 

 𝜷̂ = (∑ 𝑿𝒊
𝑻𝑿𝒊

𝑝
𝑖=1 )

−1
⋅ (∑ 𝑿𝒊

𝑻𝒚𝒊
𝑝
𝑖=1 ). (8) 

 

Furthermore, inserting Equation (8) into Equation (7) and 

division by 𝑑𝑓 = 𝑝 ⋅ 𝑛 − 𝑚  denoting the statistical 

degrees of freedom provides the LSE of the model 

variance 

 

𝜎̂2 =
1

𝑑𝑓
∑(𝒚𝒊 − 𝑿𝒊𝜷̂)

𝑇
(𝒚𝒊 − 𝑿𝒊𝜷̂)

𝒑

𝒊=𝟏

 (9) 

 

and the computation of other related parameters. Setting 

up the 𝒚𝒊’s and the 𝑿𝒊’s is not trivial. A possible approach 

using the row vectors of the reduced incidence matrix in 

Equation (3) is given by 

 

𝒚𝒊 = 𝒁 ⋅ 𝑑𝑖𝑎𝑔(𝑪𝒆𝒃𝒊) ⋅ 𝒄𝒚 (10) 

 

and 

 

𝑿𝒊 = −𝒁 ⋅ 𝑑𝑖𝑎𝑔(𝑪𝒆𝒃𝒊) ⋅ 𝑪𝑿 (11) 

 

with 𝒁 ∈ ℝ𝑛×(𝑚+1) , 𝑪𝒆 ∈ ℤ
(𝑚+1)×𝑛𝑒 , 𝒄𝒚 ∈ ℤ

(𝑚+1)  and 

𝑪𝑿 ∈ ℤ
(𝑚+1)×𝑚. That is, these four parameters must be 

set up only once, and then it provides the responses and 

design matrices of all sub-models. The matrix 𝒁 holds 

the predictor variables 𝒛𝒊,𝒋 = 𝜕𝒇𝒊/𝜕𝛽𝛿(𝑖,𝑗)  (= 𝑚 

columns) and the response variable 𝒛𝒊⋆,𝟏 = 𝒇𝒊⋆  (= 1 

column) of 𝑛 measuring points (= rows) and it yields 

 

𝒁 = (𝒛𝟏,𝟏, 𝒛𝟏,𝟐…𝒛𝒏𝒆,𝒎𝒏𝒆
) (12) 

 

with ∑ 𝑚𝑖
𝑛𝑒
𝑖=1 = 𝑚 + 1 and the index 𝛿(𝑖, 𝑗), which gives 

∀𝑖, 𝑗 ∈ {ℕ|(𝑖 ≤ 𝑛𝑒) ∧ (𝑖 ≠ 𝑖⋆), 𝑗 ≤ 𝑚𝑖}:  
 

𝛿(𝑖, 𝑗) =

{
 
 

 
 
∑𝑚𝑘

𝑖−1

𝑘=1

+ 𝑗,        if 𝑖 < 𝑖⋆, and

∑𝑚𝑘

𝑖−1

𝑘=1

+ 𝑗 − 1, if 𝑖 > 𝑖⋆.

   (13) 

 

A case in point: The flow function design in Equation (4) 

gives 

 

𝒁 = (𝝎̂𝟏, 𝝎̂𝟏
𝟐, 𝝎̂𝟐, 𝝎̂𝟐

𝟐, 𝝎̂𝟑, 𝝎̂𝟑
𝟐, 𝝎̂𝟒) (14) 

 

where 𝝎̂𝒊 ∈ ℝ
𝑛  denotes the vector of 𝑛 measured flow 

estimates belonging to edge 𝑖. The representation 𝝎̂𝒊
𝜸
 is 

only symbolical and it stands for  

 

𝝎̂𝒊
𝜸
≡ (

𝜔̂𝑖,1
𝛾

⋮
𝜔̂𝑖,𝑛

𝛾
) . (15) 

 

The elements of the remaining parameters 𝑪𝒆, 𝒄𝒚 and 𝑪𝑿 

are either 0’s or 1’s. The diagonal matrix 𝑑𝑖𝑎𝑔(𝑪𝒆𝒃𝒊) ∈
ℤ(𝑚+1)×(𝑚+1)  assigns the factors ∈ {−1,0, +1}  to the 

columns of 𝒁. The matrix 𝑪𝒙 and the vector 𝒄𝒚 assign the 

columns of 𝒁 to the contributing flow functions. A case 

in point: The flow function design in Equation (4) yields 

 

𝑪𝒆 =

(

 
 
 
 

1
1
0
0
0
0
0

0
0
1
1
0
0
0

0
0
0
0
1
1
0

0
0
0
0
0
0
1)

 
 
 
 

 , 𝒄𝒚 =

(

 
 
 
 

0
0
0
0
0
0
1)

 
 
 
 

, and 

𝑪𝑿 =

(

 
 
 
 

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

    

0
0
0
0
1
0
0

    

0
0
0
0
0
1
0)

 
 
 
 

 . 

(16) 

 

Continuing our example with one single inner vertex by 

inserting Equations (3), (14) and (16) into Equations (10) 

and (11), we obtain 
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𝒚 = 𝒚𝒊 = 𝝎̂𝟒 (17) 

 

and 

 

𝑿 = 𝑿𝒊 = (𝝎̂𝟏, 𝝎̂𝟏
𝟐, 𝝎̂𝟐, 𝝎̂𝟐

𝟐, 𝝎̂𝟑, 𝝎̂𝟑
𝟐). (18) 

 

Finally, let us provide a last auxiliary parameter 

definition denoted by master matrix which yields 

 

𝑴 =∑𝑑𝑖𝑎𝑔(𝑪𝒆𝒃𝒊)

𝑝

𝑖=1

⋅ 𝒁𝑻𝒁 ⋅ 𝑑𝑖𝑎𝑔(𝑪𝒆𝒃𝒊) 

𝑴 ∈ ℝ(𝑚+1)×(𝑚+1) 

(19) 

 

and which provides simplified representations for 

Equations (8), (9) and the covariance matrix 

 

 𝜷̂ = (𝑪𝑿
𝑻𝑴𝑪𝑿)

−1
⋅ (−𝑪𝑿

𝑻𝑴𝒄𝒚) ∈ ℝ
𝑚, (20) 

𝜎̂2 =
1

𝑑𝑓
(𝒄𝒚 + 𝑪𝑿𝜷̂)

𝑇
𝑴(𝒄𝒚 + 𝑪𝑿𝜷̂) ∈ ℝ, (21) 

 𝑐𝑜𝑣(𝜷̂) = 𝜎̂2(𝑪𝑿
𝑻𝑴𝑪𝑿)

−1
∈ ℝ𝑚×𝑚. (22) 

 

2.4 Automated variable selection 

The number of possible flow function combinations 

grows exponentially in 𝑛𝑒 and yields 

 

𝑛𝑐𝑜𝑚𝑏 = ∏ (2max(𝑚𝑖) − 1)
𝑛𝑒
𝑖=1,𝑖≠𝑖⋆ . (23) 

 

Consequently, the search for the best model needs a 

strategy to find it and a quantitative measure to evaluate 

it. For the latter, the corrected Akaike information 

criterion, e.g., [3], given by 

 

𝐴𝐼𝐶𝑐 = 𝑝𝑛 ⋅ ln (
𝑆𝑆𝐸(𝜷̂)

𝑝𝑛
) + 2𝑚 + 2

𝑚2 +𝑚

𝑝𝑛 −𝑚 − 1
 (24) 

 

is expected to suit well also for a low number of 

observations 𝑝𝑛 . The lower the value in the equation 

above, the better the model. The first term in Equation 

(24) accounts for the accuracy of the model to avoid 

underfitting, and the remaining two terms penalize too 

high complexity, which is intended to avoid overfitting. 

There exist numerous strategies in the scientific literature 

to find an acceptable good model, e.g., [4]. Here, we 

make use of a simple backward elimination algorithm 

which is expected to find an acceptable model after 𝑛𝑚 ≤
(max(𝑚) − 𝑛𝑒 + 2) evaluations. This search algorithm 

works in the following manner: 

 

1. Start with a regression model holding the 

maximum number of predictor variables 𝑀𝑗 =

max(𝑚)  with 𝑗 = 1  (e.g., 𝑀𝑗 = 6  in our 

example). 

2. Compute 𝐴𝐼𝐶𝑐
(𝑗)

 with Equation (24). 

3. Compute all percentiles ∀𝑖 ≤ 𝑀𝑗: 

 

𝑡𝑖 =
𝛽̂𝑖

𝑠𝑒(𝛽̂𝑖) 
 (25) 

 

with the standard error 

 

𝑠𝑒(𝛽̂
𝑖
)  = √[𝑐𝑜𝑣(𝜷̂)]

𝑖𝑖
 (26) 

 

4. Eliminate the predictor variable 𝒛 in Equation 

(14) whose absolute value of the corresponding 

percentile is the smallest. Remove it only if the 

flow function has more than one predictor 

variable. Otherwise remove one with the next 

smallest percentage from another flow function. 

Assuming the 𝑖 -th predictor variable must be 

eliminated, proceed as follows: 

a. Remove the 𝑖-th column in 𝒁 if 𝑖 < 𝑖⋆. 
Otherwise remove column (𝑖 + 1). 

b. Remove the 𝑖-th column in 𝑪𝑿. 

c. Remove the 𝑖-th row in 𝑪𝒆, 𝑪𝑿 and 𝒄𝒚 

if 𝑖 < 𝑖⋆ . Remove row (𝑖 + 1) 
otherwise. 

5. Increase the index 𝑗 → 𝑗 + 1. 

6. Compute the new regression model having 

𝑀𝑗 = 𝑀𝑗−1 − 1 predictor variables. 

7. Compute 𝐴𝐼𝐶𝑐
(𝑗)

 with Equation (24). 

8. Continue to step 3, if 𝐴𝐼𝐶𝑐
(𝑗)
≤ 𝐴𝐼𝐶𝑐

(𝑗−1)
 and if 

𝑀𝑗 ≥ 𝑛𝑒. 

9. Stop the algorithm and apply diagnostic tools 

onto the most suitable model, which has been 

found. 

Back to our example where we have 𝑛𝑐𝑜𝑚𝑏 = 27 

possible flow function combinations. The backward 

elimination algorithm requires only 𝑛𝑚 ≤ 4  models to 

evaluate. The results of this search procedure are listed in 

Table 2. The columns from left to right denote the index 

𝑗, the number of regressors 𝑚, the degrees of freedom 𝑑𝑓, 

the coefficient of determination 𝑅2 , the information 

criterion 𝐴𝐼𝐶𝑐  from Equation (24) and the model term 

with the lowest percentile and which is to be eliminated 

in the model which follows. The complexity and the 

accuracy of the evaluated models decrease from top to 

bottom. It is typical that 𝑅2  favors the most complex 

model (𝑗 = 1) because its definition does not involve any 

penalty term. The adjusted coefficient of determination 

𝑅𝑎𝑑𝑗
2  accounts slightly for the complexity. However, both 

tend to overfit given data [4]. 

 

Table 2: Results of the backward elimination algorithm starting 

with the flow functions given in (4) 

𝑗 (−) 𝑚 (−) 𝑑𝑓 (−) 𝑅2 (−) 𝐴𝐼𝐶𝑐  (−) eliminate 

1 6 3 .999993 -94.6 𝛽6𝜔̂3
2 

2 5 4 .999993 -96.5 𝛽2𝜔̂1
2 

3 4 5 .999993 -98.4 𝛽4𝜔̂2
2 

4 3 6 .999991 -99.1 - 

 

The parameter 𝐴𝐼𝐶𝑐  favors the simplest model (𝑗 = 4), 

which uses the flow function definition 

 

𝑓1(𝝎̂
𝑇; 𝜷) = 𝛽1𝜔̂1, 

𝑓2(𝝎̂
𝑇; 𝜷) = 𝛽2𝜔̂𝟐, 

𝑓3(𝝎̂
𝑇; 𝜷) = 𝛽3𝜔̂𝟑, and 

𝑓4(𝝎̂
𝑇; 𝜷) = 𝜔̂𝟒. 

(27) 
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The model above coincides exactly with the model 

choice in [2]. 

 

2.5 Hypothesis testing and residual diagnostic 

After a possible candidate for a suitable model has been 

found by the search algorithm in the previous section, we 

need to perform obligatory checks with respect to 

hypothesis tests on the LSEs, non-randomized residual 

pattern and outlier detection, for instance, by using 

deletion studentized residuals, e.g., [4], [1]. 

Table 3 summarizes the result of 𝑡-tests on the individual 

LSEs 𝛽̂𝑖. The columns from left to right reveal the index 

𝑖 , the values of  𝛽̂𝑖 , their standard error 𝑠𝑒(𝛽̂𝑖) , the 

percentile using Equation (25) and the probability of 

rejection 𝑝𝑟 ∈ (0,1) . We commonly choose a 

significance level of 𝛼 = 0.05 and recognize, that for all 

LSEs it yields 𝑝𝑟 ≪ 𝛼 revealing high significance of the 

chosen regression model. 

 

Table 3: Results of the t-test with model in Equation (27) 

𝑖 (−) 𝛽̂ (−) 𝑠𝑒(𝛽̂) (−) 𝑡 (−) 𝑝𝑟 (−) 

1 0.8572 0.0084 102.14 5.9E-11 

2 0.9621 0.0086 111.24 3.6E-11 

3 0.9288 0.0257 36.20 3.0E-08 

 

The residual vector is defined by the difference between 

response vector and fitted vector and it gives 

 

𝝐̂ = 𝒚 − 𝒚̂ = 𝒚 − 𝑿𝜷̂ ∈ ℝ𝑝𝑛. (28) 

 

Figure 2 provides a diagram showing the relative 

residuals  

 
𝜖𝑖̂
𝑦𝑖
=
[𝝐̂]𝑖
[𝒚]𝑖

∈ ℝ (29) 

 

on the primary vertical axis versus the measuring point 

number. The deviations from the horizontal axis appear 

randomly distributed and there is no clear indication of a 

possible outlier. This statement can also be confirmed by 

considering deletion studentized residuals, which 

provide a more sophisticated outlier detection method, 

but which has been omitted here. Due to the low number 

of measuring points all observations are kept in. Finally, 

we can state that the model in Equation (27) describes 

well the available network data with a regression 

standard deviation from Equation (21) yielding  

𝜎̂ = 0.0036 for 𝑑𝑓 = 6 degrees of freedom. 

 

2.6 Mean and confidence interval of edge flow rates 

Now we can deliver the most important output of the 

calibration method. First, a mean edge flow rate  𝑞̂𝑖 can 

be calculated in using Equation (27) and the results 

 

Figure 2: Residual plot of the model in Equation (27) 

 

given in Table 3. It yields 

 

𝑞̂1(𝜔̂1) =  0.8572(84) ⋅ 𝜔̂1, 

𝑞̂2(𝜔̂𝟐) =  0.9621(86) ⋅ 𝜔̂2, 

𝑞̂3(𝜔̂𝟑) =  0.929(26) ⋅ 𝜔̂3, and 

𝑞̂4(𝝎̂
𝑇) = 𝑞̂1(𝜔̂1) + 𝑞̂2(𝜔̂2) + 𝑞̂3(𝜔̂3) . 

(30) 

 

The computation of the confidence interval requires the 

variance of the mean flow rate, which is obtained with 

Equation (22) providing 

 

𝑠𝑒2(𝑞̂𝑖) =∑∑(
𝜕𝑞̂𝑖

𝜕𝛽̂𝑗
)(

𝜕𝑞̂𝑖

𝜕𝛽̂𝑘
)

𝑚

𝑘=1

𝑚

𝑗=1

[𝑐𝑜𝑣(𝜷̂)]
𝑗𝑘

 (31) 

 

and the 100% ⋅ (1 − 𝛼/2) -th percentil of the 𝑡𝑑𝑓 -

statistics yielding 

 

𝑡 = 𝑡 (1 −
𝛼

2
, 𝑝𝑛 − 𝑚) (32) 

 

Consequently, with the positive square root of Equation 

(33) and with Equation (32) the 100% ⋅ (1 − 𝛼) 
confidence interval of an edge flow rate 𝑞𝑖 is given by  

 
𝑞̂𝑖 −  𝑠𝑒(𝑞̂𝑖) ⋅ 𝑡 ≤ 𝑞𝑖 ≤ 𝑞̂𝑖 +  𝑠𝑒(𝑞̂𝑖) ⋅ 𝑡 . (33) 

 

For our problem with 𝑡 = 2.447 and Table 3 we obtain 

 
0.8367 ⋅ 𝜔̂1 ≤ 𝑞1 ≤ 0.8778 ⋅ 𝜔̂1 
0.9410 ⋅ 𝜔̂2 ≤ 𝑞2 ≤ 0.9833 ⋅ 𝜔̂2 
0.8660 ⋅ 𝜔̂3 ≤ 𝑞3 ≤ 0.9916 ⋅ 𝜔̂3 

(34) 

 

A diagrammatic comparison between the measured edge 

flow rates 𝜔̂𝑖 and the mean flow rates 𝑞̂𝑖 can be found in 

Figure 3. It clearly shows the outcome of Table 3, that the 

change of edge flow 1 is higher than for the others to 

fulfill the continuity law with the chosen reference flow 

in Table 1. In Figure 4 The curvature (i.e., here just a 

straight line) of the one-sided confidence intervals 

𝑠𝑒(𝑞̂𝑖) ⋅ 𝑡  for mean edge flow 1  (red line) and 2  (blue 

line) is very similar. This is not surprising because their 

edge flows have been measured with the same type of  
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Figure 3: Comparison of measured (circles) and mean (solid line) 

flow rates for edge 1 (top), 2 (middle) and 3 (bottom) versus 

measured edge flow rates 

 

 

Figure 4: One-sided confidence intervals 𝒔𝒆(𝒒̂𝒊) ⋅ 𝒕 for edge 1 (red), 

2 (blue) and 3 (magenta) versus mean flow rates 𝒒̂𝒊 

metering system on pipe sections with identical 

dimension and they are using the same type of flow 

function. The slope of the one-sided confidence interval 

for mean edge flow 3 (magenta line) is steeper than the 

others, which bases on the lower absolute values. 

However, the drawback of this method becomes evident 

by examining the curvatures in Figure 4: all one-sided 

confidence intervals are zero at zero mean edge flow. 

This is because the flow functions in (27) have been 

designed without intercept. On the one side, if two or 

more flow functions, which contribute to the same inner 

vertex, kept an intercept, the design matrix 𝑿 in Equation 

(5) would not have full column rank anymore and the 

system of equations could not be solved. On the other 

side, if an intercept was assigned to a single flow 

function, the system of equations could be solved, but the 

regressor of this intercept would compensate any 

irregularities of all contributing flow functions to meet 

the continuity law, and, therefore, the mean edge flows 

would become meaningless. 

 

Conclusion 

 

A numerical method, which enables the simultaneous 

calibration of edge flow metering systems within a 

hydraulic system, has been introduced. The output of one 

metering system serves as reference, which the 

calibration of the remaining metering systems are related 

to. It is cost-efficient and advantageous in reducing the 

measurement uncertainty, that the necessary flow 

measurements can be conducted in-situ and, usually, 

under normal operating conditions. The search for a 

suitable regression model, which describes the portions 

of each edge flow rate best, is done by combining a 

backward elimination algorithm with the corrected 

Akaike information criterion. The steps in performing the 

computations of this method have been given in 

appropriate detailedness for a hydraulic network with one 

inner vertex, which represents the case a practitioner 

faces most often on hydroelectric sites. The treatment of 

more complex systems, e.g., fresh water supply systems 

with multiple inner vertices, and the use of non-linear 

flow functions is described in detail in the provided 

references. 
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